ATP CONFERENCE INDLA

Test Scoring Algorithms of Multiple Choice Tests Proceeding from
Classical Test Theory (CTT) to Item Response Theory (IRT)
Yielding Several Score Types of
Increasing Reliability and Decreasing Measurement Error

CLASSICAL TEST THEORY (CTT) (1910-1955)

- While statistics as a discipline developed around 400 years ago, CTT started off as majority of practices developed during19101920.
- This theory has component theories like Theory of Validity, Theory of Reliability, Theory of Objectivity, Theory of Test Analysis, Theory of Item Analysis etc.
- Most of the practices were initially confined to psychological tests and later on extended to educational testing.
- However, a new test theory had been developing over the past sixty years that was conceptually more powerful than CTT. This new approach was known as Item Response Theory (IRT).
- CTT recognizes the group of test takers and the whole of the test.
- All statistical quantities are derived from the total group and the total test.
- Therefore, all statistics are group dependent.
- Any analysis using CTT will be based on test data formats of (A,B,C,D,X) to some extent and ($1,0, \mathrm{X}$) to a large extent.
- Several application softwares have been developed to perform a comprehensive CTT analysis, use of MS Excel is the most comfortable software to use.

For purposes of understanding the title content of the topic, an illustrative example is taken up.

Example

NUMBER RIGHT SCORES

DS for No. right scores	
Mean	17.40449
Standard Error	0.178565
Median	18
Mode	19
Standard Deviation	4.764718
Sample Variance	22.70254
Kurtosis	-0.03204
Skewness	-0.29951
Range	28
Minimum	0
Maximum	28
Sum	12392
Count	712
Largest(1)	28
Smallest(1)	0
Confidence Level(95.0\%)	0.350578

n/n-1	1.034483		
200/30	6.666667		
$170 / 30$	5.666667		
	0.767829		
KR 20 (Average Estimate) SEM	2.295838		
SEM\%	7.652794		
	0.956612	Satisfies ETS World Standard	
KR 20 (200)	0.992482		
SEM	3.308272		
SEM\%	0.701513		
	2.603154		
KR 21 (Lower Bound Estimate)	8.677179		
SEM			
SEM\%	0.940006	Satisfies ETS World Standard	
KR 21 (200)	1.167059		
SEM	3.890196		
SEM\%			

Split Half	0.626226
SEM	2.913009
SEM\%	9.710031
Full Test	0.770158
SEM	2.284291
SEM\%	7.614304

NEGATIVE MARKED SCORES

- The next test score type algorithm is formula Scoring=

Number Right- (Number Wrong/N-1)
where N is number of options for every item in every test item.

- For every test taker, this correction varies.

Mean= 13.63
Standard Deviation $=5.99$
gives the scale of measurement

DS for Negative Marking

Mean	13.6353
Standard Error	0.224851
Median	14
Mode	16.66667
Standard Deviation	5.999775
Sample Variance	35.9973
Kurtosis	-0.30737
Skewness	-0.19091
Range	31.33333
Minimum	-4
Maximum	27.33333
Sum	9708.333
Count	712
Largest(1)	27.33333
Smallest(1)	-4
Confidence Level(95.0\%)	0.441451

tandard Error14
Mode5.999775
Sample Variance-0.30737
-0.19091Minimum-4
Maximum9708.333712
Largest(1)0.441451

n(maximum)	27.33333	
n/n-1	1.037975	
$200 / 30$	6.666667	
$170 / 30$	5.666667	
KR 21 (Lower Bound Estimate)	0.840938	
SEM	2.392865	
SEM\%	8.754385	
KR 21 (200)	0.972411	Satisfies ETS World Standard
SEM	0.996567	
SEM\%	3.645979	

SCORING WEIGHT SCORES (SWS)

- The next scoring type algorithm is that of Scoring Weight.
- Scoring Weight varies from item to item.
- An item in the test that has the least index of difficulty is given a score of 1 , that is the scoring weight for this item.
- Any other item has an index of difficulty more than this, the difference is incremented in difficulty.
- This difference is added to 1 , which gives Scoring Weight for this item.
- This Scoring Weight is placed in the matrix $(1,0, X)$ replacing every 1 for an item with corresponding Scoring Weight.
- Scoring Weight Score of every test taker varies.
- This method is awarded patent.

	DS for SWS	
	Mean	21.84832
	Standard Error	0.238482
Mean $=21.84$	Median	21.94817
	Mode	36.60693
Standard Deviation $=$	Standard Deviation	6.363496
gives the measurement scale	Sample Variance	40.49408
	Kurtosis	-0.178535
	Skewness	-0.174609
	Range	36.60693
	Minimum	0
	Maximum	36.60693
	Sum	15556
	Count	712
	Largest(1)	36.60693
	Smallest(1)	0
	Confidence Level(95.0\%)	0.468213

Standard Error 0.238482Mode36.60693
Standard Deviation40.49408
Kurtosis-0.174609
Range 36.60693Maximum36.60693
um712Smallest(1)0
Confidence Level(95.0\%) 0.468213

n(maximum)	36.60693			
n/n-1	1.028084			
200/30	6.666667			
170/30	5.666667			
KR 21 (Lower Bound Estimate)	0.804451			
SEM	2.813999			
SEM\%	7.687067			
KR 21 (200)	1.193557			
SEM	3.260467			
SEM\%				
SEM				

DERIVED SCORES

- The next test score algorithm is that of Derived Score (Scaled Score).
- Scales that are used:
a) Mean $=0$, Standard Deviation=1 (Z Score)
b) Mean $=50$, Standard Deviation=10 (Student T Score)
c) Mean=50, Standard Deviation=16 (T Modified/Natarajan Score)

- Z Score = (Number Right Score-Mean)/Standard Deviation	Mean	1.89611E-16
	Standard Error	0.037476584
	Median	0.124982337
	Mode	0.334858338
- This can be from -3 to +3 or -4 to +4 . - This is a normal distribution.	Standard Deviation	1
	Sample Variance	1
	Kurtosis	-0.032036606
	Skewness	-0.299510523
	Range	5.876528015
Mean $=0$	Minimum	-3.652785672
Standard Deviation = 1 gives the measurement scale	Maximum	2.223742343
	Sum	$1.35003 \mathrm{E}-13$
	Count	712
	Largest(1)	2.223742343
	Smallest(1)	-3.652785672
	Confidence Level(95.0\%)	0.073578007

T Score

Mean 50

T Score $=50+\left(10^{*}\right.$ Z Score $)$

Mean $=50$

Standard Deviation $=10$
gives the measurement scale

Standard Error	0.374766
Median	51.24982
Mode	53.34858
Standard Deviation	10
Sample Variance	-0.03204
Kurtosis	-0.29951
Skewness	58.76528
Range	13.47214
Minimum	72.23742
Maximum	35600
Sum	712
Count	72.23742
Largest(1)	13.47214
Smallest(1)	0.73578
Confidence Level(95.0\%)	

n(maximum)	72.23742	
n/n-1	1.014038	
200/30	6.666667	
$170 / 30$	5.666667	
KR 21 (Lower Bound Estimate)	0.857958	
SEM	3.768847	
SEM\%	5.217305	
	0.975768	Satisfies ETS World Standard
KR 21 (200)	1.556662	
SEM	2.154925	
SEM\%		

KR 21 (200)
SEM
SEM\%

T Modified/Natarajan Score

- T Modified/Natarajan Score $=50+\left(16^{*}\right.$ Z Score $)$

Mean $=50$
Standard Deviation $=16$
gives the measurement scale

- This method is awarded patent.
Mean 50
Standard Error 0.599625
Median 51.99972
Mode 55.35773
Standard Deviation 16
Sample Variance 256
Kurtosis -0.03204
Skewness -0.29951
Range 94.02445
Minimum -8.44457
Maximum 85.57988
Sum 35600
Count 712
Largest(1) 85.57988
Smallest(1) -8.44457
Confidence Level(95.0\%) 1.177248

n(maximum)	85.57988	
n/n-1	1.011823	
200/30	6.666667	
170/30	5.666667	
KR 21 (Lower Bound Estimate)	0.929662	
SEM	4.243415	
SEM\%	4.958427	
KR 21 (200)	0.988778	Standard
SEM	1.694916	
SEM\%	1.980508	

Satisfies ETS World
KR 21 (200)

SEM\%
1.980508

PARTLAL CREDIT MODEL (PCM) SCORES

- The next score type algorithm is that of Partial Credit Model Scores.
- Every option in a multiple choice item choice is given a credit.
- The key option getting 4 , the next best option 3 , and the next option 2 and the last option 1.
- Credits of 3,2 and 1 are given for options of decreasing number of higher ability choices.
- Thus, every item has partial credit and every test score can be worked out to give partial credit score.
- This method is just applied for Patent.

	DS for PCM	
	Mean	96.58708
	Standard Error	0.503991
Mean $=96.58$	Median	99
	Mode	99
Standard Deviation $=13.44$	Standard Deviation	13.44817
gives the measurement scale	Sample Variance	180.8532
	Kurtosis	8.187918
	Skewness	-1.85381
	Range	118
	Minimum	0
	Maximum	118
	Sum	68770
	Count	712
	Largest(1)	118
	Smallest(1)	0
	Confidence Level(95.0\%)	0.989489

Median 99
Mode13.44817
Sample Variance8.187918
Skewness118
Minimum 0Sum68770
Count 712Smallest(1)0
Confidence Level(95.0\%) 0.989489

n(maximum)	118	
n/n-1	1.008547	
200/30	6.666667	
170/30	5.666667	
KR 21 (Lower Bound Estimate)	0.910805	
SEM	4.016375	
SEM\%	3.403708	
KR 21 (200)	0.985523	Satisfies ETS World Standard
SEM	1.618083	
SEM\%	1.371256	

170/30
KR 21 (Lower Bound Estimate) 0.910805
SEM 4.016375
SEM\% 3.403708
1.371256

Percentile Rank/Score

- The next test score type algorithm is that of Percentile Rank/Score.
- Percentile Rank/Score for every number right score is an invariant and unique positioning of the score within the group.
- This is obtained by dividing mid point cumulative frequency at that score by the number of test takers in that group.
- This varies from score to score.
- This method has received the highest court (Supreme Court of India) legal sanction.
- This method is just applied for Patent.

DS for PR

Mean

Mean =50
Standard Deviation $=28.83$
gives the measurement scale

Standard Error	1.080455848
Median	52.52808989
Mode	60.32303371
Standard Deviation	28.83015793
Sample Variance	831.1780063
Kurtosis	-1.198498623
Skewness	-0.001093476
Range	99.57865169
Minimum	0.140449438
Maximum	99.71910112
Sum	35600
Count	712
Largest(1)	99.71910112
Smallest(1)	0.140449438
Confidence	
Level(95.0\%)	2.121265561

n(maximum)	99.71910112
$n / n-1$	1.010129752
200/30	6.666666667
170/30	5.666666667
KR 21 (Lower Bound	
Estimate)	0.979832863
SEM	4.09420089
SEM\%	4.10573385
	0.996922169 Satisfies ETS World Standard
KR 21 (200)	1.599445344
SEM	1.603950824
SEM\%	

CONFIDENCE LEVEL RATED (CLR) SCORE

- The next test score type algorithm is that of Confidence Level Rated (CLR) Score.
- Confidence Level Rated (CLR) Score initially was researched to see whether the confidence of a learner (not a test taker) improves over as learning progresses and it was found learners become increasingly confident but no attempt was made to actually quantify the impact of confidence level in taking an assessment (a test or a combination of tests).
- This CLR is applied to the candidate's response to every item and is immediately following the response to that item.
- In a given Multiple Choice test, every item is followed with a CLR choice with 4 options:
A) $0-25 \%$
B) $26 \%-50 \%$
C) $51 \%-75 \%$
D) $76 \%-100 \%$
- Every test taker responding to every test item is to record his/her CLR.
- Several marking schemes are designed to mark a test taker on her/his meril correct and incorrect responses in accordance with the Confidence Level Rating $\mathrm{s} /$ he provides for all the items in the test.
- MT has developed a unique scoring pattern combining the response correct or incorrect suitably with levels of confidence.

Rating Scale	Marks	
4-point scale:	For Correct Answer	For Incorrect Answer
0% to 25%	0	0
26% to 50%	1	-1
51% to 75%	2	-1.5
76% to 100%	3	-2

Mean $=26.06$Standard Deviation $=21.04$gives the measurement scaleThis method is to be applied forPatent.
Mean 26.06976744
Standard Error 3.208799734
Median 24.5
Mode 32
Standard Deviation 21.04150699
Sample Variance 442.7450166
Kurtosis -0.027847939
Skewness 0.457643409
Range 96.5
Minimum -15
Maximum 81.5
Sum 1121
Count 43
Largest(1) 81.5
Smallest(1) -15
Confidence Level(95.0\%) 6.475619955

n/n-1	1.01242236	
200/30	6.666666667	
$170 / 30$	5.666666667	
KR21 (Lower Bound Estimate)	0.971877641	
SEM	3.528602305	
SEM\%	4.329573381	
KR21 (200)	0.995678341	Satisfies ETS World Standard
SEM	1.383254455	
SEM\%	1.69724473	

ITEM RESPONSE THEORY (IRT) TRUE SCORES

- The final destination to our test score type algorithm is that of Item Response Theory (IRT).
- Three Mathematical Models were developed giving Single Parameter, Two Parameter and Three Parameter Logistic Models.
- Of these, Fred Lord's Three Parameter Model is the most accurate and used by MT.
- IRT True score for a test taker is the sum total of probability of getting the correct answer for all items in the test of a given ability of the test taker.
- The source for probability of getting the correct answer for every item is from Item Characteristic Curve (ICC) which describes the relationship between the probability of getting the correct answer and the ability of the test taker.
- It is in the form of Inverse Exponential Function.
- All these are derived for all the items using $(1,0, \mathrm{X})$ format of data responses of test items and utilizing the application software like BILOG MG3.
- Thus, for every item the Three Parameters Item Discrimination (a), Item difficulty (b) and Item guessing(c) are obtained through Maximum Likelihood Estimate using successive approximation and arriving at a desired level of accuracy of say 0.001.
- Similarly, test taker ability is arrived using Maximum Likelihood Estimator and by Successive Approximation to arrive at again to an accuracy of 0.001 .
- The probability of getting a correct answer to any item of given parameters will be obtained by using the probability formula.
- All such probabilities for all items for a given ability parameter are summed up to give IRT True Scores.
- Illustration is given in the hyperlink attached.

THANK
YOU!!

