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Abstract 

With the continual progress of computer technologies, computer automated scoring (CAS) 

has become a popular tool for evaluating writing assessments. Research of applications of these 

methodologies to new types of performance assessments is still emerging. While research has 

generally shown a high agreement of CAS system generated scores with those produced by human 

raters, concerns and questions have been raised about appropriate analyses and validity of 

decisions/interpretations based on those scores. In this paper we expand the emerging discussions 

on validation strategies on CAS by illustrating several analyses can be accomplished with 

available data. These analyses compare the degree to which two CAS systems accurately score 

data from a structured interview using the original scores provided by human raters as the 

criterion. Results suggest key differences across the two systems as well as differences in the 

statistical procedures used to evaluate them. The use of several statistical and qualitative analyses 

is recommended for evaluating contemporary CAS systems. 
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Evaluating Computer Automated Scoring:  Issues, Methods, and an Empirical Illustration 
 

Introduction 

 A major challenge faced by testing programs pertains to the scoring of various types of 

constructed-response items. In recent years, computer automated scoring (CAS) systems have 

emerged as one solution to this challenge. While different CAS procedures have yielded a range of 

results, there is generally a high level of correspondence between the scores produced by human 

scorers and CAS systems (see, for example, a review by Khaliq [2003]). Analyses of the scores 

produced by human raters and CAS systems can provide valuable information when addressing 

reliability and validity issues. 

 While validity issues have been discussed (e.g., Clauser, Kane, & Swanson, 2002) and 

general framework for validation design has been offered (e.g., Bennett & Bejar, 1998; Yang, 

Buckendahl, Juszkiewicz, & Bhola, 2002), a more systematic examination of contemporary 

validity concepts, current practices and available methodologies is needed. There are a number of 

questions about CAS systems raised by the research community and general public. Some of these 

stakeholder groups are concerned with the appearance of conflict of interest because the published 

research in the area is mostly completed by groups that develop and market CAS systems. Others 

are concerned about generalizability of the CAS studies across domains and populations. Others, 

yet, are simply not convinced that methodologies used to examine the meaningfulness of CAS 

generated scores are most appropriate. 

 In this paper, we discuss validity issues in CAS, describe methods for evaluating validity 

evidence to support CAS-produced scores, and offer an illustration of how these methods were 

applied to a structured interview used for employment testing. Our goal with this study is to 

extend the validity literature pertaining to CAS to other types of tests. In doing so we examined 
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the efficacy of two CAS systems with constructed-response data from an instrument measuring 

personality and attitude aspects, rather than measuring knowledge, skill, and ability. We also 

evaluated these systems as they applied to multiple open-ended items from structured interviews 

rather than individual or a small number of writing prompts or tasks that are used in most 

applications. Finally, we examine the decisions about the meaningfulness of the CAS systems with 

respect to both item and total scores. Throughout, we explain our rationale for choosing certain 

methodologies and make general recommendations on designing and conducting studies involving 

CAS systems. 

 A secondary goal of this study is to illustrate appropriate analyses that can be conducted on 

pilot data to empirically compare two or more CAS systems. We focus our illustrations on 

analyses that can be done during a testing program’s piloting phase to evaluate the feasibility of 

CAS systems. Practitioners are looking for guidelines and examples of how to carry out adequate 

analysis to determine whether CAS systems can perform appropriate scoring tasks. We also hope 

that these illustrations will encourage potential users of CAS systems to conduct independent 

analyses, instead of relying on research provided by system developers. 

Contemporary CAS Systems 

 In the field of education, attempts to develop CAS systems date back to the late 1960s 

when Ellis Page developed the first generation of Project Essay Grader (PEG) (Kukich, 2000; 

Page, 1966; Page, 1994). The development of PEG consisted of three major steps (Page, 1994). 

First, a set of measurable proxy features for assessing essay quality was identified. Next, multiple 

regression was used to find the optimal combination of these features that best predicts the ratings 

of human experts. Finally, the features and the optimal combination were translated into computer 

programs. The current version of PEG may be used to provide holistic scores of essays as well as 
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trait scores for instructional and diagnostic feedback (Shermis, Koch, Page, Keith, & Harrington, 

1999). 

 In recent years, several other CAS systems have been developed to score essay responses, 

including Intelligent Essay Assesor (IEA) by Knowledge Analysis Technologies, Intellimetric by 

Vantage Learning, and E-rater by ETS-Technologies. Like PEG, these systems claim to provide 

both scores and some amount of instructional feedback. The IEA (Landauer, Laham, & Foltz, 

2001; Laham, 2001) applies latent semantic analysis (LSA) to assess writing quality. LSA 

methodology is used to judge the semantic relatedness among documents such as essays 

(Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998). To generate scoring models for 

essays, the IEA engine first processes a large body of text in the domain of interest. Then, each 

scoring model is calibrated on a number of essays that human experts have rated. In the end, IEA 

predicts how the human experts would have scored the semantic content of a new essay by 

comparing it to essays used in the calibration process (Landauer, Laham, & Foltz, 2000, 2001). 

 Elliot (2001) and the Intellimetric website provide information about the technologies and 

models of their respective CAS systems. According to these sources, Intellimetric incorporates 

various artificial intelligence techniques and statistical methods. It generates a scoring model for 

an essay prompt by training on a set of pre-scored responses without pre-specifying a set of 

features or a scoring rubric. Elliot (2001, p. 2) asserts Intellimetric is able to "infer the rubric and 

the pooled judgments of the human scorers" from the training materials. 

 The core technologies of E-rater came from research in the areas of natural language 

processing and information retrieval (Burstein, Kukich, Wolff, Lu, & Chodorow, 1998; Burstein, 

Kukich, Wolff, Lu, Chodorow, Braden-Harder, & Harris, 1998; Burstein & Marcu, 2000; 

Burstein, 2001a, 2001b). These technologies were used to develop three modules aimed at 
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identifying three characteristics of an essay: syntactic variety, topic content, and organization of 

ideas (Kukich, 2000; Burstein & Marcu, 2000). To generate a scoring model, a scoring rubric is 

needed. The rubric includes specific descriptions of score levels. E-rater then processes a set of 

training essays that expert raters have pre-scored. It identifies the salient features and models in 

the pre-scored essays to find the optimal combination that best predicts expert ratings. The 

resulting model is used to create the scoring program for new essays. 

 In addition to those CAS systems developed to score essays, there are also applications 

developed for scoring other types of constructed-response items. Stephen Clyman and his 

colleagues at the National Board of Medical Examiners developed a system to score computer-

simulated performance assessments of physicians' patient management skills (Clauser, Subhiyah, 

Nungester, Ripkey, Clyman, & McKinley, 1995; Clauser, Margolis, Clyman, & Ross, 1997; 

Clauser, Ross, Clyman, Rose, Margolis Nungester, Piemme, Chang, El-Bayoumi, Malakoff, & 

Pincetl, 1997; Clauser, Swanson, & Clyman, 1999; Clauser, Harik, & Clyman, 2000).  National 

Council of Architectural Registration Boards (NCARB) developed another system to score 

graphic simulation tasks on the Architect Registration Examination (Bejar, 1991; Bejar & Braun, 

1994; Williamson, Bejar, & Hone, 1999). A third system is used in the Dental Interactive 

Simulation Corporation (DISC) assessment (Johnson, Wohlgemuth, Cameron, Caughtman, 

Koertge, Barna, & Schultz, 1998; Mislevy, Steinberg, Breyer, Almond, & Johnson, 2002). 

 CAS systems have faced skepticism since their inception. Some of the criticisms pertain to 

logistics issues such as the costs of developing CAS systems, and the availability of computers 

and other technologies required to implement them. Other concerns address more fundamental 

issues regarding the validity of CAS system generated scores, such as the over-reliance on surface 

features of responses, the insensitivity to the content of responses and to creativity, and the 
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vulnerability to new types of cheating and test-taking strategies. However, with the advances in 

theories and technologies as well as the increasing accessibility to computers, processing speed, 

and web-based applications, these concerns are being addressed. 

 In general, two important improvements contribute to the increasing popularity of CAS 

systems. First, compared to earlier procedures, which relied heavily on surface elements, current 

CAS systems are designed to analyze deeper structures of responses and to replicate measurement 

of the constructs of interest. Second, CAS systems continue to receive increasingly sophisticated 

evaluations regarding their appropriateness and utility. The improvements made under such 

intense scrutiny further increased the popularity and credibility of the CAS systems. In the context 

of these improvements, Williamson, Bejar and Hone (1999) presented a number of advantages of 

modern CAS systems over human scoring. With CAS systems, a given response will always 

receive the same results (reproducibility); the same scoring criteria is consistently applied to all 

responses (consistency); specific reasons and processes behind computer scoring can be traced, 

investigated and manipulated (tractability); items are to be constructed in a more precise fashion 

(item specification); responses can be evaluated at a higher level of precision and specificity 

(granularity); scoring criteria are more articulated and much of the subjectivity in human scoring 

can be removed (objectivity); scoring outcomes are likely to be more reliable (reliability); and the 

scoring process can be less time-, resource- and cost-demanding (efficiency). These advantages 

support the expansion of these systems in testing programs. At the same time, recommendations 

for appropriate validation strategies will continue to dominate discussion. 

CAS Validation Frameworks 

 Bennett and Bejar (1998) presented an original framework for validating computer-based 

test scores.  Using contemporary validity theory as a guide, they argued that the scoring method 
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should be considered as a dynamic component of a larger testing system. Such a testing system 

would include interrelated components such as test development tools, examinee interface, 

tutorials, and reporting methods. The interrelatedness among these components is obvious as the 

decisions made upon each one of them would directly or indirectly affect the others. Because the 

emphasis of the study is on CAS systems, we focus on the relationships that include the scoring 

method. 

 Clauser et al. (2002) discussed validity issues in details for computer scoring. Yang et al. 

(2002) added that one should also evaluate the relative importance and appropriateness of certain 

validity evidence by considering the level of integration of a CAS system to the entire testing 

program. Differences in the level of integration reflect the differences in the perceptions of the 

utility and implications stemming from the use of a CAS system. One practical utilization of a 

CAS system is as merely a replacement or substitute for human scorers. In this situation, validity 

evidence for the human-generated scores can be used as the basis of validating scores generated 

with the CAS procedure. When assessing agreement of a CAS system produced scores, multiple 

statistical indices should be used because different agreement indices provide related, but different 

information on the performance of a CAS procedure. Additionally, one should evaluate the 

adequacy and relevance of different indices to a given situation. 

 Naturally, with the proliferation of CAS systems, there is a growing body of literature on 

the attempts made to validate the meaning and uses of scores generated by CAS systems. These 

validation strategies may be classified into three general types. The first type focuses on the 

relationship among scores given to the same response by different scorers. The second type 

focuses on the relationship between these scores and external measures. The third type focuses on 
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the scoring processes and the mental models represented by the CAS systems. For a detailed 

review of these validation strategies, see Yang, et al. (2002). 

 In subsequent sections we present an empirical illustration that compares the performance 

of two CAS systems on pilot data for a structured employment interview that has multiple 

constructed response items. We sought to illustrate methods that may be used to evaluate the 

following questions: 1) Could two existing CAS systems be extended to a different constructed-

response test? 2) What are appropriate types of reliability evidence at the item and total score 

levels? 3) Is there sufficient validity evidence to use these scores for the desired inference? 

Methods for Evaluating CAS System Generated Scores 

 The following analyses reflect a validation approach that focuses on the relationship 

among scores given to the same instrument by different scorers. This approach is consistent with 

the purpose of the study, that is, to evaluate the efficacy of a CAS system using pilot data. The 

level of CAS system integration for the testing program was low. According to Yang et al. (2002), 

at this level of integration, the capability of a CAS system to replicate the scores of expert raters is 

the major concern. Moreover, even with higher levels of integration, score correspondence is a key 

starting point for evaluating the performance of computer scoring. 

 Various methods are used to assess rater agreement in educational, psychological, medical, 

and biological research. These methods can also be used to evaluate agreement between CAS 

system generated scores and expert raters’ scores. There are four key aspects of rater agreement. 

First, agreement analyses can be used to evaluate the strength of association among scores (or 

categories) given by different raters. Second, the introduction of systematic bias from raters can be 

examined.  For example, raters may have different tendencies in terms of leniency, they may have 

different interpretations of a scoring rubric, or they may use the scoring scale differently. The 
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comparison of score distributions of raters affords the opportunity to study the presence of biases.  

Third, the agreement among raters in an absolute sense can be examined, e.g. whether raters are 

likely to assign the exact same score or category to the same response. In this case, point-by-point 

agreement analyses are useful. Finally, one may want to examine the pattern and nature of 

agreement or disagreement among raters. Such information can then be used to improve the 

scoring rubric and training of human or computer raters. It should be noted that it is a commonly 

held impression that rater agreement is about the “reliability” of scores. However, evidence on the 

four aspects described above extends traditional concepts of reliability, which address the 

consistency of outcomes across replications of the measurement process and address key validity 

issues. It is also important to note that although we may ascribe a level of confidence to the score 

when independent judgments yield similar values, rater consistency only reflects one source of 

potential error in the score and by itself is insufficient to support validity.  

In the context of assessing the quality of CAS system generated scores, because we 

generally rely on expert raters for this purpose, the fundamental question is whether a computer 

program can provide scores that are accurate with respect to some criterion. With subjectively 

scored tests, our common criterion is the scores of human experts. Rater agreement analysis is a 

strategy to evaluate the concurrent validity of the CAS system generated scores. In this sense the 

first aspect of rater agreement – association between raters – is a rather liberal approach. A high 

association among scores is not the same as exact correspondence among scores. A computer 

program may consistently assign one more point to every response and its scores will still have a 

perfect correlation with the criterion. 

 The other three aspects may be more critical to evaluate the validity of scoring. Providers 

and users of CAS systems need to show that the computer system does not assign different scores 
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(or categories) systematically in terms of mean scores or distributions (e.g., the criterion scores). 

They also need to show that an individual who should be given a particular score according to the 

criterion will be likely to receive that score from the CAS system. Finally, understanding the 

pattern and nature of agreement or disagreement helps to improve the performance of the CAS 

system, and to support the validity of the inferences made from CAS system generated scores. 

Although there are many analytical methods for investigating rater agreement, it is useful 

to begin the examination of data with simple means and a review of cross-tabulations between 

item scores produced by the CAS systems and the criteria. It is within this context that the 

proportion of overall agreement index is commonly used. This measure shows the percent of times 

when a CAS system assigned the same scores as the rater(s). However, this index has limitations 

because it can be very high simply by chance (Cohen, 1960; Fleiss, 1975; Fleiss, 1981). To 

overcome this problem, researchers have proposed agreement indices that take into account the 

size of chance agreement (Scott, 1955; Cohen, 1960; Landis & Koch, 1977; Maxwell, 1977; 

Fleiss, 1981; Zwick, 1988). Among these indices, Cohen’s κ coefficient (Cohen, 1960) is widely 

used. This coefficient has its own assumptions and limitations and its application has been 

cautioned (Cohen, 1960; Maclure & Willett, 1987; Zwick, 1988; Feinstein & Cicchetti, 1990; 

Cicchetti & Feinstein, 1990; Cook, 1998). 

 In a discussion of κ and a few other κ -like coefficients, Zwick (1988) suggested the use of 

a 2-step approach to assess rater agreement.  The first task is to perform a test on the similarity of 

score distributions produced by raters. This analysis can be accomplished by testing the marginal 

homogeneity of the raters’ scores. If marginal homogeneity is rejected, further analysis of the level 

of agreement between raters is unnecessary. If marginal homogeneity is not rejected, κ, or 

preferably, according to Zwick (1988), Scott’s π coefficient can be used to assess chance-
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corrected agreement. Investigating the difference in the distributions of raters’ scores provides 

information regarding rater biases. It is only after biases are ruled out, that the assessment of 

agreement can become an assessment of the accuracy of scores. 

Method 

Data Source and Background 

 To explore the application of CAS systems to a new domain, namely employment testing, 

organizations that market these systems to analyze and score constructed responses were invited to 

use their CAS systems to score a structured employment interview. In this study the structured 

interview measures work motivation, interpersonal skills, and cognitive styles. Together these 

aspects can be used to predict success in a particular job environment. The structured interview 

consisted of 60 open-ended items. Some of the questions fell in the range of typical situational or 

behavior description prompts used in employee selection whereas others were different, such as 

“How competitive are you?”1. Some questions included follow-up probes that asked candidates to 

give examples, such as “Tell me a time when you were very competitive.”  

The instrument contained job-related and biographical questions that were related to 

defined job performance criteria. For each item, expert raters using a scoring rubric scored 

candidates’ responses. The scoring rubric credited a given response as showing either the presence 

or absence of a desirable aspect.  Although the decision was dichotomous (scored as 0 or 1) at the 

item level, the decision about the employability of a candidate was made at the total score level 

(ranges between 0 and 60). 

 The study used a pool of 326 interview transcripts. Expert raters pre-scored the transcripts.  

Among the sample of transcripts, 286 were randomly selected to form a training set to calibrate 

                                                 
1 Due to the proprietary nature of the actual interview questions, examples in the text are not directly from the actual 
interview used, but are similar in structure. 
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the CAS systems. The remaining 40 were not used for calibration and formed a validation sample 

to evaluate the performance of scoring models. The analyses were based on the data from these 40 

transcripts. Although larger validation sample or additional cross-validation samples of transcripts 

are desirable to evaluate the performance of the CAS systems, it is also important to have a large 

sample to initially create the scoring models. In our study, with the limited number of transcripts 

available, focus was first given to ensure a large enough amount of transcripts were used to train 

and calibrate the scoring models. The decision was made based on the inputs from the developers 

of the CAS systems with respect to the optimum size of the calibration sample. Results from two 

CAS systems1 (i.e., CAS systems A and B) are reported.  

Data Analyses 

 In the current study, agreement analysis at the item level followed Zwick’s (1988) two-step 

approach.  The first step evaluates the differences among item difficulties (proportion correct) 

computed from each CAS system and from expert raters. Because items were dichotomously 

scored, item difficulties obtained by two raters can be used to assess the homogeneity of the 

marginal distributions with the Stuart-Maxwell test (Stuart, 1955; Maxwell, 1970; Zwick, 1988). 

The null hypothesis of the test is: Ho: pi+ = p+j, where pi+ is the marginal proportion of being in 

row i, and p+j is the marginal proportion of being in column j. As Zwick (1988) noted, in a 2-by-2 

table, the Stuart-Maxwell test becomes the McNemar test. The computation of the McNemar test 

statistic is shown in formula 1. 

 
( )

CB
CB
+
−

=
2

2χ
 (1) 

                                                 
1 The names of the CAS systems are not identified to protect the confidentiality of the respective organizations in this 
exploratory study. 
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In formula 1, B represents the number of item responses to which one rater assigned a “0” 

but the other assigned a “1”, and C is the number of item responses to which one rater assigned a 

“1” and the other assigned a “0”.  The sampling distribution of the above statistic when Ho is true 

is asymptotically distributed as χ2 with df = 1 (Siegel & Castellan, 1988). The “desirable” result of 

the McNemar test in this situation is to retain the null hypothesis. That is, the marginal 

homogeneity holds for an item. In this situation, Type II error (i.e., failure to reject a false null 

hypothesis) was judged to be a more serious concern than Type I error. A common method for 

controlling for Type II error is by raising the level of Type I error (alpha) allowed. In our case, a 

higher alpha level (.10) was chosen. A higher Type I error rate makes it easier to reject the null 

hypothesis and in turn provides greater confidence in a decision where the null hypothesis is not 

rejected. We acknowledge that a potential negative consequence of setting a more lenient alpha 

level is the greater probability of rejecting the null hypothesis suggesting that the distributions are 

different when perhaps they are not. The consequence of a possible “over-rejection” could be a 

higher level of scrutiny before accepting the performance of CAS system. However we believe 

this is desirable in a pilot study where a CAS system’s utility to a new situation is investigated. 

 The second step assesses the item-level decision consistency between CAS systems and 

the expert raters. Such analyses were conducted only on items that the test of marginal 

homogeneity was not statistically significant. The Scott’s π coefficient (Scott, 1955; Zwick, 1988) 

was used as a major index for this analysis and is calculated as: 

 
c

ca

P
PP

−
−

=
1

π  (2) 

where Pa is the proportion of observed exact agreement. It is computed as the number of 

incidences where both raters assigned the same score divided by the total number of incidences. 
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The term Pc is the expected proportion of agreement by chance (Scott, 1955; Zwick, 1988). With 

dichotomously scored items, it is computed as 

 
2

11
2

00

22
⎟
⎠
⎞

⎜
⎝
⎛ +

+⎟
⎠
⎞

⎜
⎝
⎛ +

= ++++ pppp
Pc , (3) 

where P0+ and P1+ are the proportions of one rater assigned a score of 0 and a score of 1, 

respectively, and P+0 and P+1 are the proportions of the other rater assigned a score of 0 and a 

score of 1, respectively. Along with Scott’s π coefficient, the overall proportion of agreement (Pa) 

was also reported. 

 Finally, the level of agreement between a CAS system and expert rater on each item was 

classified based on combining the analyses of item difficulty, marginal homogeneity and item 

level decision consistency. The following decision rules were used for this classification: 

1. The agreement between a CAS system and expert rater on an item was classified as 

poor if the test of marginal homogeneity was statistically significant at .10 level, or if 

the difference between item difficulties (proportion correct) was greater than .10 as an 

indicator of practical significance. 

2. If the test of marginal homogeneity was not significant and item difficulty difference 

was less than or equal to .10, the level of agreement was still classified as poor if the 

Scott’s π coefficient was less than .40 or Pa was less than .75. 

3. If the test of marginal homogeneity was not significant and the difference in item 

difficulty was less than or equal to .10, the level of agreement was classified as good if 

the Scott’s π coefficient was greater than or equal to .75 and Pa was greater than or 

equal to .90. 

4. All other situations were classified as moderate agreement. 
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 Fleiss (1981) suggested that Cohen’s κ values of .75 or larger indicate excellent agreement 

and values less than .40 indicate poor agreement. Zwick (1988) suggested that when marginal 

distributions are similar, values of Scott’s π and Cohen’s κ become very close, with the former 

always being smaller than or equal to the latter. Thus, Fleiss’s (1981) recommendation on Cohen’s 

κ was applied to choose cutoff values of Scott’s π.  Incidentally, the minimum and maximum 

values of κ -like statistics (e.g., κ and π) depend on, among other things, marginal distributions 

(Cohen, 1960; Fleiss, 1981). This should caution researchers against applying universal cutoff 

values of these statistics. In this study, it was less problematic to apply the same set of cutoff 

values across different items because Scott’s π was used to make classification decisions only 

when marginal homogeneity was assumed.  

 Because the employee selection interview data are used to facilitate hiring decisions based 

on total scores, score agreement at the total score level is also important when evaluating CAS 

system generated results.  Besides item-level analyses, characteristics of the total scores from the 

CAS systems and expert raters were examined.  The analyses included assessing distribution 

comparability, score correlations, score differences and decision consistency based on total scores. 

The rationale for these analyses is that when inferences are made about individuals on the basis of 

any scoring method there should be consistency in those scores to provide empirical evidence for 

those inferences. 

 The first series of total score level analyses examined the similarity between the pairwise 

comparisons of total score distributions. Such analyses were conducted first because if the score 

distributions were drastically different, then high levels of score agreement are unlikely. Because 

at this first stage of analysis the agreement between individual scores is not yet of interest, two-

sample tests were utilized.  Two non-parametric tests, the Kolmogorov-Smirnov (K-S) and 
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Wilcoxon-Mann-Whitney (W-M-W) tests were used. Each of these tests assumes that the 

distributions are based on at least ordinal data. Generally, the K-S test is better for smaller samples 

and the W-M-W test is better for larger samples (Siegel & Castellan, 1988). Our sample of 40 was 

on the threshold of the distinction between large and small, so both statistical tests were used and 

statistical significance tests were conducted using an alpha level of .10. Again, the .10 Type I error 

level was chosen because the desirable outcome of such test is that the score distributions are not 

significantly different.  Next, descriptive analyses were conducted to calculate the mean, range and 

standard deviation of the total scores to inspect the shape of the distribution.  

 The next three series of analysis focus on the level of agreement between total scores. 

First, correlations were computed among the total scores of various scoring methods. A Pearson 

correlation was chosen because the individual item-level data, when combined, might be 

interpreted at an interval level of measurement. Evaluating the relationship among scores 

produced by the various scoring methods is important to ensure that different methods elicited 

similar structure from the responses. However, it is also important to evaluate agreement between 

scores individuals received. In this study, the Wilcoxon signed rank test (Siegel & Castellan, 

1988) is used to assess difference between scores. 

 Finally, decision consistency analyses were conducted because the interview was designed 

to make total-score-based decisions about candidates’ advancement in a selection process. The 

same two-step approach used in the item-level analysis was used to assess total-score-level 

decision consistency. The McNemar test was used to first test for marginal homogeneity because 

the decision took on a binary form. When the test is not significant at a .10 level, Scott’s π based 

on pass/fail classification decisions were calculated for each of the pairwise comparisons among 

the three scoring methods considered. These analyses were conducted on decisions that were 
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based on a cut score that ranged from approximately half a standard deviation below to 

approximately half a standard deviation above the mean scores of expert human raters. These cut 

scores were selected to cover the typical range of cut points used in the applications of similar 

structured interviews, such as cut points might have been chosen by clients using these 

instruments to assist hiring decisions. Proportion agreement and differences in the passing rates 

were also calculated for each pair of comparison. 

Results 

Item level analyses 

 Table 1 provides a summary of descriptive analyses of item difficulty differences and the 

test of marginal homogeneity. When looking at differences in item difficulties obtained from 

human rater and a CAS system, CAS system A had 20 items whose difficulties differed by more 

than .10 from those obtained from human rater. CAS system B had 6 such items. Nineteen of the 

60 items failed the test of marginal homogeneity (p < .10) with system A, and 5 items failed the 

test with system B. 

[Insert Table 1 Here] 

 Table 2 summarizes the analyses using Scott’s π and overall proportion of agreement. 

Following the rationale of the two-step approach, the summary only includes items for which the 

test of marginal homogeneity was not statistically significant at .10 level. As shown by this table, 

among the items passed the test of marginal homogeneity (41 from CAS system A and 55 from 

CAS system B), the distributions of Scott’s π statistics and overall proportion of agreement are 

quite similar between the two systems. 

[Insert Table 2 Here] 
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 Table 3 summarizes, for both systems, the levels of agreement between a CAS system and 

human rater based on multiple criteria. Performance on each item was classified as “poor”, 

“moderate”, and “good” following the four decision rules described earlier in the data analysis 

section. These decision rules took into account the statistical tests of marginal homogeneity, the 

numerical differences in item difficulty, and two indices of item-level decision consistency 

(Scott’s π and percent exact agreement). With these decision rules, CAS system A had “good”, 

“moderate”, and “poor” agreement with expert raters on 2, 12, and 46 items, respectively. CAS 

system B had “good”, “moderate”, and “poor” agreement with expert raters on 4, 15, and 41 items, 

respectively. The numbers of good, moderate, and poor agreement items are similar between the 

two systems. However the differences in item difficulties between computer and human scoring 

were somewhat larger with CAS system A. For example, CAS system A had 19 items that failed 

the test of marginal homogeneity whereas CAS system B had only 5. 

[Insert Table 3 Here] 

 Table 4 further illustrated that although the overall numbers of good, moderate, and poor 

agreement items were similar, the two CAS systems did not perform equally on the same items. 

There were only 9 items that both systems’ performance was classified as good or moderate. On 

the contrary, there were 15 items that one system’s performance was good or moderate whereas 

the other system’s performance was poor. 

[Insert Table 4 Here] 

Total Score Analyses 

 Table 5 presents the results of the total score distribution comparability analyses. As 

shown in Table 5 the comparisons of the score distributions were similar for both statistical 

procedures. None of the comparisons suggests that there were distribution differences across the 
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three scoring methods (i.e., 2 CAS systems, and expert raters). These results provided guidance 

and greater confidence for the additional analyses that are described below. 

[Insert Table 5 Here] 

 Table 6 shows the comparison of total score means and standard deviations for each of the 

three scoring models. The mean total scores for the three methods were very similar with values 

ranging from 27.08 to 27.88. The standard deviation, though, was somewhat different across the 

scoring methods, ranging from 3.94 to 6.81. This limited range in variation of scores speaks to the 

validity of the inferences. It is assumed that the instrument measures a range of performance and 

that candidates who took the interview had a similar range of performance. Yet, with some scoring 

methods, there was a limited range in scores. Such a narrow range means that if items are designed 

to distinguish between higher and lower candidate performance, some of the items are not adding 

to this distinction using the two CAS systems.  

[Insert Table 6 Here] 

 In practice, at this point one may conclude that the CAS systems produced scores that 

differ in meaning from those of expert raters (and hence also lack item-level agreement). However 

to complete the illustration on possible analytical methods, an analysis to assess total-score-level 

score agreement was performed. These analyses evaluated correlations among total scores, 

agreement between total scores, and decision consistency.  

 Table 7 shows the correlations among the total scores of various scoring methods, as well 

as the results of the Wilcoxon signed rank test, where scores of each candidate’s responses 

(transcript) received were compared across scoring models. The correlations among the total 

scores of these scoring models and the statistically non-significant results of the test of pairs of 

scores suggested that there were moderate levels of consistency at the total score level. A stronger 
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relationship was found between the human rater and CAS system B. The results suggest that the 

two CAS systems shared some of the variance with the expert raters but there were also 

differences in the psychometric properties on the scores. 

[Insert Table 7 Here] 

 The use of test scores to make pass/fail decisions requires the inspection of decision 

consistency. Tables 8 to 10 show the results of decision consistency analysis at three different 

points where cut scores for “passing” could be set. Table 8 shows the number of candidates for 

each CAS system that passed or failed compared to the classification decisions of an expert rater. 

The cut score for the distribution of scores was set at approximately half a standard deviation 

below the mean (i.e., 24 out of a maximum of 60 possible points). 

[Insert Table 8 Here] 

 As shown in Table 8, with both CAS systems A and B, the test of marginal homogeneity 

was not statistically significant. Moderate agreement existed between the expert rater and the CAS 

system A scoring model, with a Scott’s π of 0.57 and with 6 candidates misclassified. Low 

agreement existed between the expert rater and the CAS System B scoring model, with a Scott’s π 

of 0.06 and with 12 candidates classified differently. The calculation of the proportion of 

agreement between the expert rater and the CAS scoring models produced values of 0.85 and 0.70 

for CAS systems A and B, respectively. A similar analysis was conducted to compare the 

decisions between the expert rater and both CAS systems using a cut score of 28 (mean value of 

human scoring model). Table 9 contains these results. Again, the test of marginal homogeneity for 

both CAS systems was not statistically significant. 
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[Insert Table 9 Here] 

 As shown in Table 9, there was relatively low agreement between the expert rater and both 

CAS Systems A and B using a cut score that was set at the mean. Calculating the proportion of 

agreement between the expert rater and CAS scoring models produced values of 0.63 and 0.60 for 

models A and B, respectively. For both CAS systems, we found similar levels of agreement with 

15 or 16 candidates classified differently depending on the system. If the CAS system-generated 

total scores were used to make classification decisions, this low level of agreement would pose 

concern. 

[Insert Table 10 Here] 

 Table 10 shows the comparison of decisions with a cut score set at a half a standard 

deviation above the mean value of the expert-rated scoring model. According to the π statistic, 

there was moderate agreement between the expert rater and the CAS systems under this condition. 

However, the test of marginal homogeneity was significant for CAS system B, which indicates a 

low agreement between the classifications based on expert rater scores and CAS system B 

generated scores. Calculating the proportion of agreement between the expert rater and CAS 

systems produced values of 0.78 and 0.85 for CAS systems A and B, respectively. For both CAS 

systems, we found slightly different levels of agreement with 6 or 9 candidates classified 

differently depending on the system. (One interesting observation was that CAS system B seemed 

to perform better than CAS system A on many comparisons except for the decisions consistency 

analysis. CAS system B may have performed poorly in the decision consistency analysis because 

it generated a score distribution that was more different from the human rater scores in terms of 

mean and standard deviation. This is shown in Table 6.  
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 Overall, the level of agreement on decision consistency was low to moderate at a cut score 

of 24, low with a cut score of 28, and moderate with a cut score of 31. Although it was not 

established, a reasonable target for proportion of agreement is 0.90 and a minimum value for π for 

indicating good agreement may be 0.75. Using these targets, none of the reported comparisons met 

these standards. These results suggest that there could be less confidence in the classification 

decisions that would be made about prospective candidates whose responses were scored using the 

current scoring models of these CAS systems. For the sample used in this study, only 40 

participants’ scores were included. Many of the comparisons had more than 10 candidates 

misclassified. The misclassification of candidates raises some concern.  If both systems lead to a 

higher than expected rate of misclassifications, we may not have evidence to select one scoring 

system over the other. 

Discussion 

 The first objective of our paper was to evaluate the efficacy of two existing CAS systems 

for scoring multiple open-ended items on a structured employment interview. The findings 

indicate neither system provided optimal results.  The findings are not surprising as the CAS 

systems were both originally designed primarily to score essays, whereas, the structured interview 

questions were designed to elicit shorter and more spontaneous verbal responses. These analyses 

are exploratory in nature and serve only as an initial attempt to extend the existing CAS 

methodology to a new testing domain. In this study the most intriguing finding is that the different 

scoring models may be identifying somewhat different characteristics in the underlying constructs 

or other, perhaps extraneous information, as revealed by the differences in the distributions and 

relationships of the scores. The dissimilarity in the scoring models reflects a difference in the basic 

approaches and processes these computer systems used to score responses. Perhaps more 
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importantly, it emphasizes that the fundamental validity issues, namely construct relevance and 

representation of the construct, need to be addressed with CAS system generated scores. Because 

these systems produced different scores, there are questions about how the construct is represented 

by these scores. 

 The second goal of the paper was to illustrate how appropriate analyses can be conducted 

to maximize information gained from limited data that may be collected during the pilot phase of 

test development. Constraints created by size of the data set and the availability of resources are 

common in pilot testing, when an organization evaluates the feasibility of using a CAS system.   

 Although score agreement is usually among the first concern when evaluating CAS system 

generated scores. The bigger picture, namely the validity of the inferences and decisions based on 

the assessment outcomes, should always dictate the framework of analysis. Because the CAS 

systems generated results that could be evaluated differently for the item and total test level, 

further examination of the characteristics of the scoring algorithm may be needed. For example, 

how would these results differ if the emphasis of the scoring program was to maximize total score 

consistency? 

 A number of methods are available to evaluate score agreement as well as broader validity 

questions, even when data is limited. Choosing among these methods should be an explicit process 

that realizes the strengths and weaknesses of each method. We make the following 

recommendations for selecting among these methods. 

1) Select appropriate methods based on the purpose of the analysis. For example, in 

the initial stage of developing the CAS system, analyzing the patterns and reasons 

of agreement and disagreement should be a priority. 
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2) Triangulate the results from multiple, appropriate methods. No single method or 

index will be able to evaluate all relevant aspects at the same time. Additionally, 

the inconsistency among the results from different methods is sometimes 

unavoidable, but may provide unique information. 

3) Take into account the actual size of the indices, not just statistical significance to 

better evaluate the quality of the score or decision. 

4) Cross-validate scoring engine calibration activities. 

5) Assess the internal structure of test scores, even with descriptive methods where 

data permit. These analyses provide evidence about the validity (or lack of validity) 

of the outcomes. They may also point out areas in which scoring methods can be 

improved. 

6) Investigate patterns of agreement/disagreement between scoring models. In the 

piloting phase of test development, these analyses are helpful to the improvement 

and defense of these models. Some statistical methods could be applied here, but 

judgmental review and qualitative analysis are also valuable. 

Our study utilized data gathered from a pilot testing of two CAS systems. The availability 

of data posed a few limitations to the design and analyses illustrated. First, we must caution 

readers that the pilot testing directly applied the existing computer scoring models to a novel 

context. Thus the results are in no way an evaluation of these systems performance on the tasks 

they were designed for, namely well-defined essay questions. Second, the limited sample size 

forced us to keep a difficult balance between the number of scripts used for calibration and for 

validation. The small number of scripts set aside for validation prohibited a cross-validation 

design. Finally, the use of a single human rater rather than a composite or consensus of several 
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raters as scoring criteria was a result of the restricted resources allocated to the pilot testing, but it 

limited the generalizability of the findings regarding the performance of the CAS system. 

Although the potential for using CAS system to score responses to structured employment 

interviews was not fully evaluated in the current study, we want to remind readers that one of the 

purposes of the study was to illustrate how appropriate analyses may be conducted when data are 

limited, such as in a pilot testing scenario. The data in our study represents an example of the 

reality that practitioners may encounter. For many potential CAS system users, their evaluation of 

the systems could be limited by the amount of training and the availability of validation materials, 

as well as by time, cost and other related resources. The illustrations in this study are intended to 

provide guidance for evaluating CAS systems with limited data. 

 We also want to emphasize the importance of considering the evaluation of computer-

generated scores as an integral part of a validation plan. As the measurement community continues 

to create innovative testing approaches that rely on technological solutions for scoring, CAS 

systems will become more widely used. The subtle distinction between what constitutes reliability 

evidence and what constitutes validity evidence continues to challenge researchers, particularly as 

it relates to subjectively scored instruments. It is possible that at the total score level, we are 

making correct decisions, but what happens at the item level may not reflect the intended 

measurement. This means that problems with scoring particular items may under- or over-

represent examinees’ performance; however, if these problems wash out at the total score, the 

decision of the performance relative to the cut score may not change. As the research in this area 

expands, the need for choosing appropriate validation methods and using appropriate statistics will 

endure greater scrutiny. This study contributes to the conversation regarding the choice and 
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interpretation of appropriate designs and statistics when data collected via computer automated 

scoring systems are analyzed. 
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Table 1 
Summary results of item difficulty analyses and testing the 
homogeneity of marginal distributions1,2

CAS System 
 CAS System 

A 
CAS System 

B 
Number of items showing large 
item difficulty difference3 20 6 

Largest item difficulty difference .33 .15 

Mean item difficulty difference .10 .05 

Number of items for which 
marginal homogeneity was 
rejected4

19 5 

Note: 
1. Total number of items = 60. 
2. Number of transcripts = 40. 
3. Large difference refers to differences between human and CAS item 

difficulties > .10. 
4. McNemar test described above was used to test the marginal homogeneity. The 

significance level chosen was .10. 
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Table 2 
Summary results of item level decision consistency analysis1,2

 CAS System A CAS System B 
 π Pa π Pa

Number of Items3 41 55 
Minimum -.14 .48 -.13 .48 
Maximum .84 .98 .84 .95 
Mean .33 .76 .33 .73 
Median .35 .75 .29 .75 
Standard Deviation .25 .11 .23 .12 
Note: 
1. Number of transcripts = 40. 
2. Only items for which marginal homogeneity holds are used in calculating values for 

this table. 
3. Number of items for which marginal homogeneity holds (i.e., test of marginal 

homogeneity was not statistically significant [α = .10]). 
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Table 3 
Item-level analysis decision rules and scoring quality classification results by CAS system 

Decision Rule 
Number of Items 

in Each 
Classification 

Test of Marginal 
Homogeneity 

Absolute 
Difference in 

Item Difficulty 
Scott's Pi Percent Exact 

Agreement Classification CAS 
System A 

CAS 
System B 

< .75 9 0 
>= .75 and < .90 7 1 < .40 

>= .90 0 0 
< .75 0 0 

>= .75 and < .90 2 1 >= .40 and < .75
>= .90 0 0 
< .75 0 0 

>= .75 and < .90 0 0 

> .100 

>= .75 
>= .90 0 0 
< .75 0 0 

>= .75 and < .90 0 0 < .40 
>= .90 1 1 
< .75 0 0 

>= .75 and < .90 0 0 >= .40 and < .75
>= .90 0 1 
< .75 0 0 

>= .75 and < .90 0 0 

Statistically 
Significant at .10 

Level 

<=.100 

>= .75 
>= .90 

Poor 

0 1 
< .75 2 4 

>= .75 and < .90 0 0 < .40 
>= .90 0 0 
< .75 0 0 

>= .75 and < .90 0 0 >= .40 and < .75
>= .90 0 0 
< .75 0 0 

>= .75 and < .90 0 0 

> .100 

>= .75 
>= .90 

Poor 

0 0 
< .75 13 18 

>= .75 and < .90 8 13 < .40 
>= .90 2 0 
< .75 

Poor 

2 1 
>= .75 and < .90 12 14 >= .40 and < .75

>= .90 
Moderate 

0 1 
< .75 Poor 0 0 

>= .75 and < .90 Moderate 0 0 

Not Statistically 
Significant at .10 

Level 

<=.100 

>= .75 
>= .90 Good 2 4 
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Table 4 
Comparing performance of the two systems. 

CAS System B Item Performance 
ClassificationCAS System A 

Item Performance 
Classification Good Moderate Poor

Total

Good 1 1 0 2 

Moderate 3 4 5 12 

Poor 0 10 36 46 

Total 4 15 41 60 
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Table 5 
Results of distribution comparisons using Kolmogorov-Smirnov and Wilcoxon-
Mann-Whitney tests (n=40). 

 K-S value (p) W-M-W (p) 

Human – CAS System A .67 (.76) -.49 (.63) 

Human – CAS System B .78 (.57) -.48 (.63) 

CAS System A – CAS System B .45 (.99) -.04 (.97) 
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Table 6 
Total score mean and standard deviation for each scoring 
method (n=40). 

 Mean 
(Range) 

Standard 
Deviation 

Human Rater 27.88 
(12 – 40) 6.81 

CAS System A 27.28 
(20 – 36) 4.73 

CAS System B 27.08 
(18 – 35) 3.94 
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Table 7 
Pearson correlations among scores from each scoring model and Wilcoxon signed 
rank test of score differences (n=40). 

 Human & 
CAS System A

Human & 
CAS System B

CAS System A &
CAS System B

    
Pearson r .62 .70 .65 
    
Wilcoxon Test    
Number of Negative Ranks 23 24 19 
Number of Positive Ranks 13 14 17 
Number of Ties 4 2 4 
Mean Negative Rank 16.85 18.17 19.66 
Mean Positive Rank 21.42 21.79 17.21 
Z .86 .95 .64 
Probability .39 .34 .52 
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Table 8 
Comparison of decisions between human and CAS models at a cut score of 
24 (n=40). 

CAS System A CAS System B Human Fail Pass Fail Pass 
Fail 6 3 2 7 
Pass 3 28 5 26 

     

Proportion Agreement .85 .70 

Absolute Difference in 
Passing Rate .00 .05 

Test of Marginal 
Homogeneity .00 (p = 1.00) .33 (p = .56) 

Scott’s π .57 .06 
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Table 9 
Comparison of decisions between human and CAS models at a cut score of 
28 (n=40). 

CAS System A CAS System B Human Fail Pass Fail Pass 
Fail 14 7 13 8 
Pass 8 11 8 11 

     

Proportion Agreement .63 .60 

Absolute Difference in 
Passing Rate .03 .00 

Test of Marginal 
Homogeneity .07 (p = .80) .00 (p = 1.00) 

Scott’s π .25 .20 
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Table 10 
Comparison of decisions between human and CAS models at a cut score of 
31 (n=40). 

CAS System A CAS System B Human Fail Pass Fail Pass 
Fail 24 3 27 0 
Pass 6 7 6 7 

     

Proportion Agreement .78 .85 

Absolute Difference in 
Passing Rate .08 .15 

Test of Marginal 
Homogeneity 1.00 (p = .32) 6.00 (p = .01) 

Scott’s π .45  
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